Building Life-Cycle Assessment

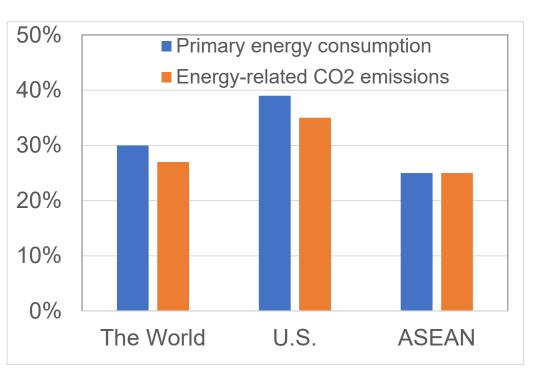
Weimin Wang, Ph.D., Assistant Professor Department of Engineering Technology

Acknowledgement

Sponsor:

U.S. Department of State

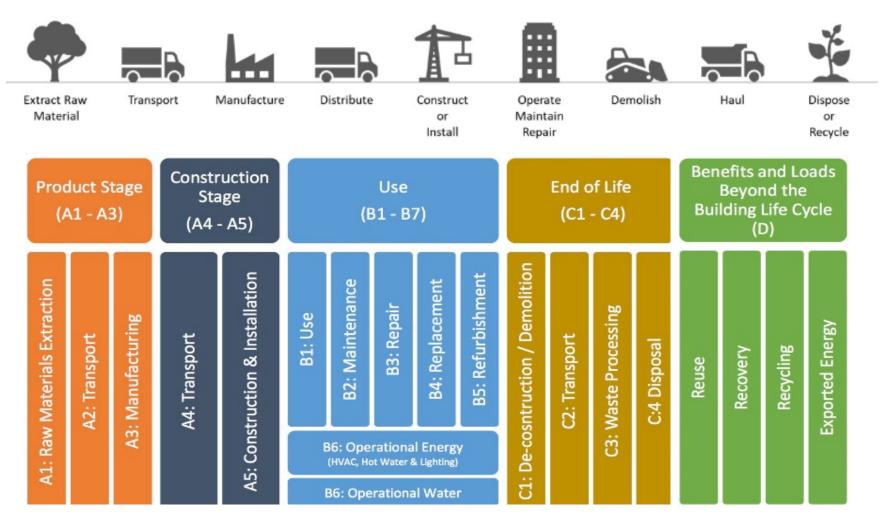
Partners:


Ho Chi Minh City University of Technology

Building and Environment

The building sector

- accounts for a large percentage of total energy consumption.
- has a large carbon footprint and a big impact on our environment.

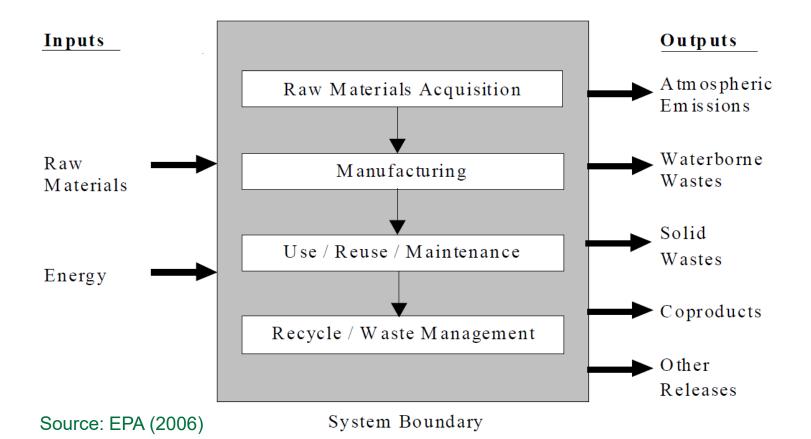

Sources:

- IEA (2022), <u>https://www.iea.org/reports/buildings</u>
- IEA (2022), <u>https://www.iea.org/reports/roadmap-for-energy-efficient-buildings-and-construction-in-the-association-of-southeast-asian-nations</u>
- EIA (2022), <u>https://www.eia.gov/energyexplained/use-of-energy/</u>

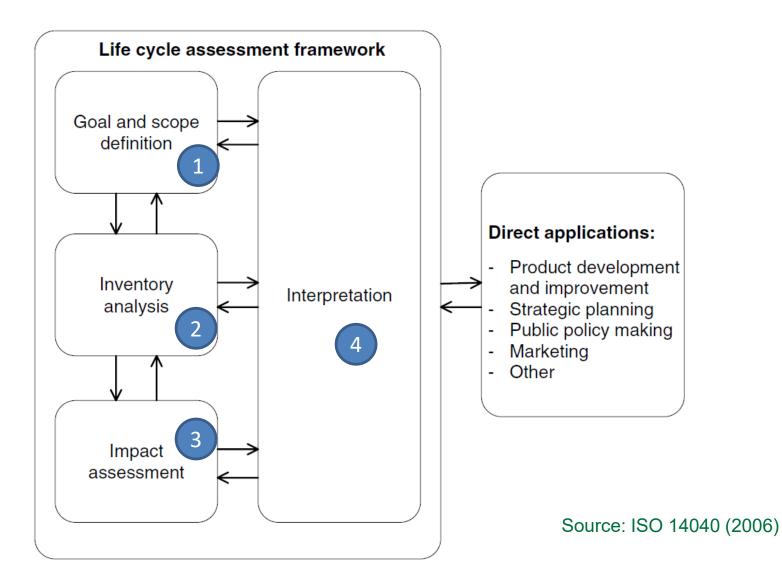
Building Environmental Performance

How to evaluate?

Building Life Cycle Stages


Sources:

- European Standard EN 15978:2011
- U.S. General Service Administration, <u>https://sftool.gov/plan/399/life-cycle-perspective-life-cycle-thinking</u>


5

Life-Cycle Assessment (LCA)

LCA is an approach to compile and evaluate the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.

LCA Components

Goal and Scope Definition

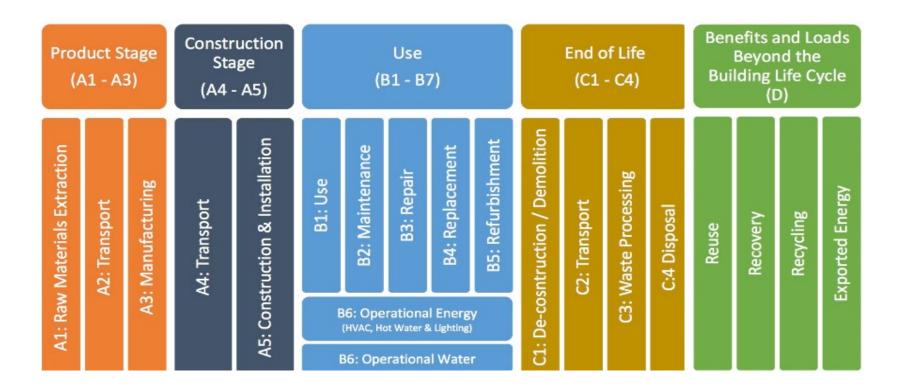
Define the purpose, the type of analysis, impact categories to be evaluated, and data to be collected.

- The Object of Assessment
- Functional Unit: LCA results can be compared on a oneto-one basis.
- System Boundary: the breadth and depth of the proposed LCA.

The Object of Assessment

- Product
- Assembly
- System
- Whole building

Functional Unit


 Equivalent use: an equal amount of product or service to the customer.

Examples:

- Floor cleaning product
- Floor coverings
- Insulation materials
- \circ Concrete
- Lamps
- Building

System Boundary: Stages Covered

- Cradle to Gate (A1-A3)
- Cradle to Grave (A1-A5, B1-B7, and C1-C4)
- Cradle to Cradle (A1-A5, B1-B7, C1-C4, and D)

Inventory Analysis

- An inventory of all inputs to and outputs from the production system is prepared.
 - Inputs: energy, non-energy resources
 - Outputs: emissions to atmosphere, water and soil
- The most resource-intensive process of LCA
- Life-Cycle Inventory (LCI) Databases
 - $\circ~$ Usually for unit processes
 - A unit process is the smallest element considered in LCI analysis for which inputs and outputs are quantified.
 - $\circ~$ Be specific to countries and regions
 - Specific manufacturer vs. Industry average

LCI Example

 U.S. Life-Cycle Inventory Database: <u>https://www.lcacommons.gov/lca-collaboration</u>

Impact Assessment

Evaluate the potential human health and environmental impacts of the inputs & output identified from the life-cycle inventory (LCI) analysis.

- Select and define impact categories
- Classification
- Characterization
- Normalization (optional)
- Grouping (optional)
- Weighting (optional)

Impact Categories

Commonly used impact categories include:

- Global Warming
- Ozone Depletion
- Acidification
- Eutrophication
- Smog Formation
- Human Health
- Ecotoxicity
- Fossil Fuel Use
- Land Use
- Water Use

Classification

Organize and combine LCI results into impact categories.

- An LCI item contributes to one impact category
- An LCI item contributes to two or more impact categories
 - When the effects are dependent on each other, allocate a representative portion of the LCI result to the impacts categories to which they contribute.
 - When the effects are independent on each other, assign the LCI result to all impact categories to which they contribute.

Example: Global Warming

The substances normally considered as contributors to global warming are:

- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxides (N₂O)
- CFC's (CFC-11, -12, -113, -114, -115)
- HCFC's (HCFC-22, -123, -124, -141b, -142b)
- HFC's (HFC-125, -134a, -152a)
- Halons
- Tetrachloromethane (CCl₄)
- 1,1,1-Trichloroethane (CCl₃CH₃)

Example: Acidification

The substances normally considered as contributors to acidification are:

- sulfur dioxide (SO₂)
- sulfur trioxide (SO₃)
- nitrogen oxides (NO_x)
- hydrogen chloride (HCI)
- nitric acid (HNO₃)
- sulfuric acid (H_2SO_4)
- ammonia (NH₃)

Characterization

- Use characterization factors (equivalency factors) to convert and combine LCI results into representative indicators of impacts to human and ecological health.
- Make it possible to compare the LCI results within each impact category.

Category Indicator Result =
$$\sum_{i} (CF_i * m_i)$$

Where,

- CF_i: Characterization factor for substance i
- m_i: mass for substance i.

Example: Global Warming Potential (GWP)

- GWP measures how much energy the emissions of 1 ton of a greenhouse gas will absorb over a given period of time, relative to the emissions of 1 ton of CO₂. → CO₂ Equivalent
- The time period usually used for GWP is 100 years.

Greenhouse Gas	100-Year Time Period				20-Year Time Period			
	AR4 2007	AF 20	R5 14	AR6 2021	AR4 2007	AF 20	R5 14	AR6 2021
	Feedback Not Included		Feedback Included		Feedback Not Included		Feedback included	
CO ₂	1	1	1	1	1	1	1	1
CH _{4 fossil origin}	25 2	20	24	29.8	72	84	86	82.5
CH _{4 non fossil origin}		28	34	27.2				80.8
N ₂ O	298	265	298	273	289	264	268	273

Source: https://www.ercevolution.energy/ipcc-sixth-assessment-report

Related Tools

EPA Greenhouse Gas Equivalencies Calculator

https://www.epa.gov/energy/greenhouse-gas-equivalenciescalculator#results

 EPA Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI)

https://www.epa.gov/chemical-research/tool-reduction-and-assessmentchemicals-and-other-environmental-impacts-traci

Normalization

- Express impact indicator data in a way that can be compared among impact categories.
- An optional step
- This can be achieved by dividing the impact category value by a selected reference quantity.
 - The total emissions or resource use for a given area (global, regional or local)
 - The total emissions or resource use for a given area on a per capita basis
 - The ratio of one alternative to another (i.e., the baseline)

Example: Normalization References

Impact Category	U.S. Total per Year	Units	Source
Global Warming	7.4 E+12	kg CO ₂ eq	Ryberg (2014)
Primary Energy Consumption – Non-Renewable	2.544E+13 (9.16E+13)	kWh (MJ)	EIA (2018)
Primary Energy Consumption – Renewable	3.222E+12 (1.16E+13)	kWh (MJ)	EIA (2018)
HH Criteria Air	7.4 E+10 ⁹	kg PM _{2.5} eq	Ryberg (2014)
HH Cancer*	1.57E+04	CTUcanc.	Ryberg (2014)
Water Consumption	3.883E+14 (1.026E+14)	L (gal)	USGS (2018)
Ecological Toxicity*	3.32E+12	CTUe	Ryberg (2014)
Eutrophication	6.6E+09	kg N eq	Ryberg (2014)
Land Use	9.15E+12 (2.26E+09)	m ² (acre)	CIA (2018)
HH Non-cancer*	3.21E+05	CTUnon-canc.	Ryberg (2014)
Smog Formation	4.2E+11	kg O3 eq	Ryberg (2014)
Acidification	2.8E+10	kg SO ₂ eq	Ryberg (2014)
Ozone Depletion	4.9E+07	kg CFC-11 eq	Ryberg (2014)
Indoor Air Quality	1.08E+10	kg VOC	NIST (2010)
U.S. Population (2010)	3.087E+8	people	US Census (2018)
* Sum of 2 subcategories			

Note: Both SI and IP units are included for impact categories when applicable.

Source: NIST BEES User Manual, 2021

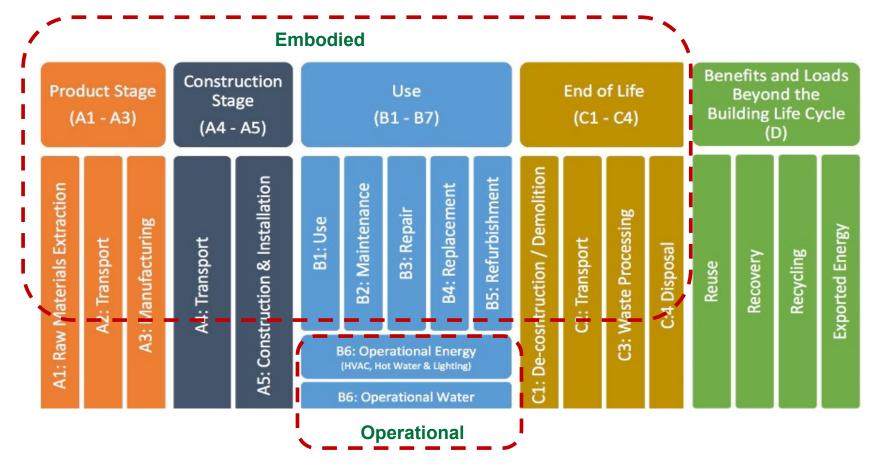
Weighting (Valuation)

- Impact category indicator results are multiplied by weighting factors and added to form a total "environmental performance" score.
- An optional step
- Weights for different impact categories are based on the perceived importance or relevance. → Subjectivity!

Interpretation

- Present LCA results in a most informative way
- Analyze results
- Reach conclusions
- Explain limitations
- Provide recommendations

Building LCA Requirements


- Green building rating systems such as LEED, Green Globes, and Living Building Challenge. For example, LEED V4.1 (BD+C) has Material and Resources Credits on:
 - Building Life-Cycle Impact Reduction (1-5 points)
 - Environmental Product Declarations (1-2 points)
- High-performance building codes and standards such as International Green Construction Code (IgCC) and ASHRAE 189

Building LCA Applications

- Purposes: design improvement, comparison, declaration, rating and standard compliance
- Project phase at which LCA is performed
- The object of assessment: materials/products, assemblies, whole building
- Life cycle stages to be included

Operational vs. Embodied

- Embodied energy
- Embodied carbon
- Embodied environmental impact

Use EPD for Material and Product Selection

EPD stands for Environmental Product Declaration. An EPD is a public, verified report that documents a product's life cycle environment impacts based on a verified LCA.

- Compliance with ISO Standard 14025
- Adherence to the appropriate industry-standard Product Category Rules (PCRs), specifying how the LCA should be conducted:
 - A clear description of the functional unit
 - A list of the life cycle stages considered in the analysis
 - Impact categories
- Third party certification of the LCA process

Source: https://sftool.gov/plan/402/environmental-product-declarations-epds

EPD Example

 Ready-mixed concrete EPD report

https://www.nrmca.org/wpcontent/uploads/2022/03/NRMCA EPDV3-2_20220301.pdf

Ceramic tile EPD report

https://interceramicusa.com/wpcontent/uploads/2021/01/101.1_Til e-Council-of-North-America_EPD_Ceramic-Tile.pdf

EPD label example (right image)

Environmental Facts Functional unit: 1 m ² of Ceramic Tile Floor Covering			
Reference Service Life (RSL): 60 Years			
Life Cycle Inventory Analysis			
Energy Demand			
Primary Renewable (MJ)	10.4		
Primary Non-Renewable (MJ)	225		
Secondary Renewable (MJ)	0.15		
Secondary Non-Renewable (MJ)	1.4		
Non-Renewable Material Sources (kg)	51		
Waste Output			
Non-Hazardous (kg)	41		
Hazardous (kg)	0.0028		
60 Year Impact Assessment			
Global Warming Potential (kg CO ₂ eq)	15		
Acidification Potential (kg SO ₂ eq)	0.0565		
Ozone Depletion Potential (kg R11 eq)	8.11E-10		
Smog Potential (kg Ethene eq)	0.0052		
Eutrophication Potential (kg Phosphate eq)	0.00604		
Abiotic Depletion Potential - Elemental (kg Sb eq)	1.22E-05		
Abiotic Depletion Potential - Fossil (MJ)	219		
Boundaries: Cradle to Grave	Clay: 70.3%		
Company: North American Tile Manufacturers	Quartz: 4.8%		
Product Name: North American-Made Ceramic Tile	Feldspar: 5.3%		
Recycled Content: Wide Percentage Range	Scrap: 4.2%		
Certification: Some Tiles Green Squared Certified®	Kaolin: 3.2%		
Other Attributes: Zero VOCs	Granite: 1.3%		
	Lime: 1.1%		
	Glaze & Stain: 5.4%		
	Other Minerals: 4.0%		

Building LCA Tools

- Embodied Carbon in Construction Calculator (EC3) Tool <u>https://buildingtransparency.org/ec3</u>
- BEES Online 2.1 → building products <u>https://ws680.nist.gov/Bees2</u>
- ATHENA Impact Estimator

 building products, assemblies, and whole building

https://calculatelca.com/software/impact-estimator/

Questions & Discussions

Weimin Wang

Email: weimin.wang@uncc.edu

Recommended Readings

- Bayer, C., Gamble, M., Gentry, R. and Joshi, S., 2010. AIA guide to building life cycle assessment in practice. The American Institute of Architects, Washington DC.
- Lewis, M., Huang, M., Carlisle, S. and Simonen, K., Introduction to embodied carbon. <u>https://content.aia.org/sites/default/files/2021-</u> <u>10/21_10_STN_DesignHealth_474805_Embodied_Carbon_Guide_Part1.pdf</u>
- Lewis, M., Huang, M., Carlisle, S. and Simonen, K., Measuring embodied carbon. <u>https://content.aia.org/sites/default/files/2021-</u> <u>10/21_10_STN_DesignHealth_474805_Embodied_Carbon_Guide_Part2.pdf</u>
- Scientific Applications International Corporation (SAIC), Curran, M.A., National Risk Management Research Laboratory (US) and Office of Research and Development, Environmental Protection Agency, United States, 2006. Life-cycle assessment: principles and practice.