

Tools for High-Performance Building Design

Weimin Wang, Ph.D., Associate Professor University of North Carolina at Charlotte July 1, 2023

What is a High-Performance Building?

CONTENTS

ANSI/ASHRAE/ICC/USGBC/IES Standard 189.1-2020 Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings

SECT	ION	PAGE				
Foreword						
1	Purpose	4				
2	Scope	4				
3	Definitions, Abbreviations, and Acronyms	4				
4	Administration and Enforcement	18				
5	Site Sustainability	18				
6	Water Use Efficiency	26				
7	Energy Efficiency	34				
8	Indoor Environmental Quality (IEQ)	62				
9	Materials and Resources	80				
10	Construction and Plans for Operation	84				
11	Normative References	96				
Nor	rmative Appendix A: Prescriptive Building Envelope Tables	108				
Nor	rmative Appendix B: Prescriptive Equipment Efficiency Tables for the Alternate Reduced Renewables and Increased Equipment Efficiency Approach in Section 7.4.1.1	109				
Nor	rmative Appendix C: Performance Option for Energy Efficiency	135				
Normative Appendix D: Building Concentrations						
Info	prmative Appendix E: Building Envelope Tables	141				
Info	Informative Appendix F: Integrated Design					
Informative Appendix G: Informative References162						
Info	prmative Appendix H: Option for Energy Efficiency Using the IECC Prescriptive Compliance Path	166				
Informative Appendix I: zEPI Conversion Methodology17						
Info	prmative Appendix J: Derivation of Source Energy Conversion Factors and Co2e Emission Factors	173				
Info	prmative Appendix K: Additional Guidance for Functional Performance Testing (FPT) and the Commissioning (Cx) Process	178				
Info	ormative Appendix L: Requirements that Overlap with Core Elements of the LEED Rating System	182				
Info	prmative Appendix M: Addenda Description Information	184				

https://www.ashrae.org/technical-resources/standards-and-guidelines/readonly-versions-of-ashrae-standards

ANSI/ASHRAE/ICC/USGBC/IES Standard 189.1-2020 (Supersedes ANSI/ASHRAE/ICC/USGBC/IES Standard 189.1-2017) Includes ANSI/ASHRAE/ICC/USGBC/IES addenda listed in Appendix M

Standard for the Design of High-Performance Green Buildings

Except Low-Rise Residential Buildings

The Complete Technical Content of the International Green Construction Code®

See Appendix M for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, the International Code Council, U.S. Green Building Council, the Illuminating Engineering Society, and the American National Standards Institute.

his Standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the Standard. Instructions for how to submit a change can be found on the ASHRAE[®] website (https://www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard can be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway NW, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2020 ASHRAE and ICC ISSN 1041-2336

Tools for High-Performance Building Design

Source: Reinhart, C. and Fitz, A., 2006. Findings from a survey on the current use of daylight simulations in building design. Energy and buildings, 38(7), pp.824-835.

Architect's Role in Building Performance Simulation

Source: <u>https://www.aia.org/resources/6157114-architects-guide-to-building-performance</u>

Building Performance Simulation Software Directory

ibpsa.us/best-directory-list/

Find Software

Search ...

Capabilities

- □ Air Flow Simulation
- Building Automation
- Building Energy Auditing
- □ Building Energy Benchmarking
- □ Building Energy Monitoring
- □ Energy Conservation Measures
- □ HVAC System Selection and Sizing
- □ Life Cycle Analysis
- □ Lighting Simulation
- □ Load Calculations
- □ Other
- □ Parametrics and Optimization
- □ Ratings and Certificates
- □ Solar and Photovoltaic Analysis
- □ Support Services
- □ Training Services
- Utility Bill and Meter Data Analysis
- □ Weather
- Weather Data and Climate Analysis
- □ Whole Building Energy Simulation

Building Type

- Commercial
- District Scale
- 🗆 Industrial
- 🗆 Multi Family
- Portfolio Scale
- 🗆 Residential
- Subsystem Level
- Urban Scale

Tools Potentially Useful for the Workshop

- Climate Analysis
 - Climate Consultant (<u>https://www.sbse.org/resources/climate-consultant</u>)
 - CBE Clima Tool (<u>https://clima.cbe.berkeley.edu/</u>)
- Energy, Solar Radiation, and Daylighting Analysis
 - Revit + Insight (<u>https://www.autodesk.com/education/students</u>)
- Thermal Comfort
 - CBE Thermal Comfort Tool (<u>https://comfort.cbe.berkeley.edu/</u>)
- Life-Cycle Assessment
 - BEES (<u>https://ws680.nist.gov/bees2</u>)
 - Athena Impact Estimator (<u>http://www.athenasmi.org/our-software-data/overview/</u>)

Climate Analysis Tools

- Climate data for building design
- Climate data files (<u>https://climate.onebuilding.org/default.html</u>)
- Climate Consultant Demo

Example Outputs of Climate Consultant

Energy Analysis with Revit and Insight

- Is based on Building Information Modeling
- Can be used in very early stage of design without detailed information
- Support design exploration and optimization
- Use Cloud computing
- Can generate and export the EnergyPlus model

References:

- https://www.youtube.com/watch?v=1nkK4yjqCfQ
- https://www.youtube.com/watch?v=7CrG6hw1Wdo

Key Steps of Energy Analysis with Revit and Insight

- 1. Create a Revit model using conceptual masses, building elements, or both
- 2. Set the project location
- 3. Review Revit energy settings
- 4. Generate the energy analytical model
- 5. Create and run energy models with different design options
- 6. Launch Insight for interactive project exploration, optimization & reporting

Email Notifications on Cloud Computing Progress

AUTODESK" INSIGHT

Hi Weimin Wang,

Your model has been received. You will receive an email when the analysis is complete and you can access your results.

Get Support

Thanks for using Insight! Autodesk Insight Team

AUTODESK' INSIGHT

Hi Weimin Wang,

Your Analysis is complete. You can access the results on Insight.

Project details: Model: Project4 Location: 78 Đường Lê Thánh Tôn, Ho Chi Minh City, Ho Chi Minh City

VIEW INSIGHT

If the above link not working, please copy the following link and paste it into your browser: <u>https://insight.autodesk.com/OneEnergy/Model/446247</u>

Get Support

Thanks for using Insight! Autodesk Insight Team

Revit + Insight Demo

Thermal Comfort Tutorial

- Environmental factors: air temperature, mean radiant temperature, relative humidity, and air velocity
- Personal factors: clothing insulation, metabolic heat
- Metrics and models

 $PPD = 100 - 95 \cdot exp(-0.03353 \cdot PMV^4 - 0.2179 PMV^2)$

References:

https://www.ripcordengineering.com/files/tech_notes/Thermal%20Comfort_An%20Introduction.pdf ASHRAE Standard 55: https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards___13

Different Applications

- Indoor built environment
 - Mechanically air-conditioned
 - Naturally air-conditioned
 - Heavily studied
 - ASHRAE Standard 55, ISO 7730, and EN-16798
- Outdoor environment
 - Urban planning, tourism attraction, weather information
 - Examples: street canyons, recreation parks, microclimate design
 - Fewer studies but draws increasing attention
- Semi-outdoor environment
 - Transitional spaces (e.g., passenger stations, stadiums, atriums)
 - Fewer studies but draws increasing attention

CBE Thermal Comfort Tool

https://comfort.cbe.berkeley.edu

30

20

/kg_{da}]

The CBE comfort tools automatically calculates the relative air speed and the dynamic clothing insulation .

Building Life-Cycle Assessment (LCA)

- LCA basics
- Athena Impact Estimator demo

Building Life Cycle Stages

Sources:

- European Standard EN 15978:2011
- U.S. General Service Administration, <u>https://sftool.gov/plan/399/life-cycle-perspective-life-cycle-thinking</u>

LCA Components

Source: ISO 14040 (2006)

Impact Assessment

Evaluate the potential human health and environmental impacts of the inputs & output identified from the life-cycle inventory analysis.

- Select and define impact categories
- Classification
- Characterization
- Normalization (optional)
- Grouping (optional)
- Weighting (optional)

Impact Categories

Commonly used impact categories include:

- Global Warming
- Ozone Depletion
- Acidification
- Eutrophication
- Smog Formation
- Human Health
- Ecotoxicity
- Fossil Fuel Use
- Land Use
- Water Use

Athena Impact Estimator Demo

		PRODUCT (A1 to A3)	CONSTRUCTION PROCESS (A4 & A5)	USE (B2, B4 & B6)		END OF LIFE (C1 to C4)	BEYOND BUILDING LIFE (D)	TOTAL EFFECTS		
LCA Measures	Unit	Total	Total	Replacement Total	Operational Energy Use Total	Total	Total	Total	A to C	A to D
Global Warming Potential	kg CO2 eq	3.41E+05	7.80E+04	1.54E+03	1.66E+06	1.67E+06	1.46E+04	-6.29E+03	2.10E+06	2.09E+0
Acidification Potential	kg SO2 eq	1.19E+03	4.98E+02	1.36E+01	1.12E+04	1.12E+04	1.79E+02	-8.01E-01	1.31E+04	1.31E+0
HH Particulate	kg PM2.5 eq	4.78E+02	8.09E+01	4.11E+00	1.99E+03	2.00E+03	6.25E+00	-3.51E-01	2.56E+03	2.56E+0
Eutrophication Potential	kg N eq	4.72E+02	9.06E+01	6.85E-01	5.30E+02	5.30E+02	1.12E+01	-4.12E-02	1.10E+03	1.10E+0
Ozone Depletion Potential	kg CFC-11 eq	9.26E-03	1.34E-03	4.45E-05	3.95E-02	3.96E-02	5.81E-07	0.00E+00	5.02E-02	5.02E-0
Smog Potential	kg O3 eq	2.17E+04	1.38E+04	1.69E+02	3.63E+04	3.65E+04	5.85E+03	-8.10E+00	7.78E+04	7.78E+0
Total Primary Energy	MJ	2.92E+06	8.31E+05	2.20E+04	2.88E+07	2.88E+07	2.15E+05	-1.60E+03	3.27E+07	3.27E+0
Non-Renewable Energy	M1	2.76E+06	8.10E+05	1 74E+04	2 86E+07	2.86E+07	2.15E+05	-1.60E+03	3.24F+07	3.24E+0

Thank You!

Sponsor:

U.S. Department of State

Contract:

Weimin Wang

Email: weimin.wang@charlotte.edu