BUILDING ENERGY SIMULATIONS

Using ClimateStudio

Hamideh Hossei

PhD Candidate in Infrastructure and Environmental Engineering

IDR Lab SoA | UNC Charlotte

MEET OUR RESEARCH TEAM

Hamideh Hossei

Research Assistant

Kyoung-Hee Kim

Ph.D., Professor, Director of IDR Lab

AGENDA

THEORETICAL

Introduction

Importance

Building Integrated Systems

Building Integrated Photovoltaics (BIPVs)

Challenges of implementing BIPV systems

What is ClimateStudio

Practice

Run the Energy Simulations

The built environment generates **40%** of annual global CO2 emissions

Buildings are the major elec. consumer

Current U.S. Electric Grid - 2020

ш

Growing PV systems

U.S. Electric Grid - 2050, Decarbonization + Electrification Scenario

REGENERATIVE	Give more than you take
RENEWABLE	Not depleted when used
RESTORATIVE	Reverse some of the damage
EFFICIENT	Reduce negative impact
DEGENERATIVE	Degrading

The new definition of the **sustainable** design

1. Bio-climatic design

2. Minimizing the impact

3. Maximizing the generation

Fast Growing Solar Industry

https://www.iea.org/energy-system/renewables/solar-pv

Fast Growing Solar Industry

9

https://www.iea.org/energy-system/renewables/solar-pv

Solar energy rapidly growing in the US

Solar farms

Building integrated PV (BIPV) systems

Opportunities:

- Integrated into the existing system
- No need for extra material to install the PV system*
- Cost-effective
- On-site electricity
- Positive aesthetic impacts

Challenges:

- Partial Shadows
- Duck Curve

BIPV system components

Tied-to-the-grid BIPVs

BIPVs

Stand-alone BIPVs

IMPLEMENTED SYSTEMS

BIPV EXAMPLES

25

OLV hospital Aalst, Belgium

Hanwha HQ, South Korea

26

https://www.unstudio.com/en/page/11994/hanwha-headquarters-remodelling

Parking, Sweden

27

https://soltechenergy.com/en/

House, London

Distribution of different BIPV systems

BIPV Challenges

- Lack of rooftop space to mount and install roof-mounted PV system
- Partial Shadows from panels selfshading or surrounding objects
- Duck curve and grid reliability

Software limitations

 Discrepancies between real-world applications and software simulations