Sustainable MEP Integration Kyoung Hee Kim, PhD AIA NCARB Professor of Architecture Ravin School of Architecture | UNC Charlotte #### THE ARCHITECT'S STUDIO COMPANION RULES OF THUMB FOR PRELIMINARY DESIGN SEVENTH EDITION JOSEPH IANO · EDWARD ALLEN WILEY # NET COMMERCIAL ARCHITECTURE ZERO ENERGY DESIGN THOMAS HOOTMAN # **Net Zero Design Approach** #### **Energy End User & HVAC Key Component** #### End uses of energy consumption by U.S. commercial buildings (2018) **Data source:** U.S. Energy Information Administration, *Commercial Buildings Energy Consumption Survey* **Note:** Btu = British thermal units Net Zero Energy Design. Hootman. 2013 ### Climate and Bioclimatic Design: Human Body Reactions to Main Climatic Elements Medical science **Biology** Environmental technology Meteorology #### **Climate and Bioclimatic Design: Psychometric Chart** 20 DEW-POINT TEMPERATURE, °C HUMIDITY RATIO, g/kg 15 WINTER SUMMER 0 -5 -1022 16 18 20 24 26 28 30 32 OPERATIVE TEMPERATURE, °C **Fig. 5 ASHRAE Summer and Winter Comfort Zones** (Acceptable ranges of operative temperature and humidity for people in typical summer and winter clothing during primarily sedentary activity.) # **HVAC System Design Goals and Recommending Systems** #### Heating and cooling system for large buildings | GIVE SPECIAL
CONSIDERATION
TO THE
SYSTEMS
INDICATED IF
YOU WANT TO: | | | Induction | VAV | Duct
VAV | Air | Multizone
CAV
(page
177) | | Chilled | Fan-Coil
Terminals
(page
180) | | | Hydronic
Radiant
Heating
and
Cooling
(page
183) | Central
Single-
Packaged
Units
(<u>page</u>
192) | Packaged
Heat
Pump
Units
(page
193) | Split-
Packaged | Packaged
Terminal
Units
(page
184) | Solar | Ventilation
Cooling | Mass | Evaporative
Cooling
(page 237) | |--|---|---|-----------|-----|-------------|-----|-----------------------------------|---|---------|--|---|---|---|--|--|--------------------|--|-------|------------------------|------|--------------------------------------| | Minimize first costs | • | • | | | | • | | | | | | | | • | | • | • | | | | | | Minimize
operating costs
and energy
consumption | • | | 0 | | | | | • | • | | • | | • | | • | | | • | • | • | • | | Maximize control of air velocity and air quality | | | 0 | • | 0 | О | О | • | | | | | | | | | | | | | | | Maintain comfort
with large heating
and cooling load
changes | | • | 0 | • | O | | | | | • | | | | | | | | | | | | | Minimize system noise | • | • | О | | О | • | О | • | • | | | • | • | | | | | • | | • | | | Minimize visual obtrusiveness | • | • | 0 | • | О | • | 0 | О | 0 | | | | • | • | | | | • | • | • | • | | Maximize
flexibility of space
reconfiguration | • | • | 0 | • | О | | | | | • | | • | | | | • | • | | | | | | Condition a large,
single-story, open
space | | | | | | | | | | | | | | • | | | | | | | | | Minimize floor
space used for the
heating and
cooling systems | | | | | | | | • | • | О | | • | • | • | • | • | • | • | • | • | • | [•] Frequently use o Less frequently used # HVAC Systems and Architectural Space Implications: VAV, CAV, Multizone System & Chilled Beam # HVAC Systems and Architectural Space Implications: Fan Coil Unit, Heat-pump, & Radiant Heating The Architect's Studio Companion. Iano & Allen. 2022 # HVAC Systems and Architectural Space Implications: VRF + Fan Coil + Underfloor Air Distribution # **HVAC Systems and Architectural Space Implications: VRF + DOAS** **Dedicated Outdoor Air System (DOAS)** #### **HVAC Systems and Architectural Space Implications: Displacement Ventilation + Perimeter Heating** ■ FIGURE 7.7 Displacement ventilation diagram for an auditorium at the Science & Student Life Center at Sacred Heart School in Atherton, California. *Image courtesy of Stantec Consulting Services, Inc.* **Displacement Ventilation with Perimeter Heating** # **HVAC Systems and Architectural Space Implications: Precooling** ■ FIGURE 7.13 The East San Jose Carnegie Library addition features a remote thermal mass for precooling ventilation air. Image courtesy of Stantec Consulting Services Inc.; image by Porus Antia. #### **HVAC Systems and Architectural Space Implications: Heat Recovery System** ■ FIGURE 7.10 Heat Recovery of a Return Airstream. Image courtesy of Stantec Consulting Services Inc.; Drawing by Jim Burns #### **Example of Zero Design Approach** #### **Systems Integration: Building Management System** Source: GAO. | GAO-15-6 Kyoung Hee Kim, PhD AIA NCARB Professor of Architecture Director of Integrated Design Research Lab UNC Charlotte kkim33@charlotte.edu