Sustainable MEP Integration

Kyoung Hee Kim, PhD AIA NCARB
Professor of Architecture
Ravin School of Architecture | UNC Charlotte

THE ARCHITECT'S STUDIO COMPANION

RULES OF THUMB FOR PRELIMINARY DESIGN

SEVENTH EDITION

JOSEPH IANO · EDWARD ALLEN

WILEY

NET COMMERCIAL ARCHITECTURE ZERO ENERGY DESIGN

THOMAS HOOTMAN

Net Zero Design Approach

Energy End User & HVAC Key Component

End uses of energy consumption by U.S. commercial buildings (2018)

Data source: U.S. Energy Information Administration, *Commercial Buildings Energy Consumption Survey* **Note:** Btu = British thermal units

Net Zero Energy Design. Hootman. 2013

Climate and Bioclimatic Design: Human Body Reactions to Main Climatic Elements

Medical science

Biology

Environmental technology

Meteorology

Climate and Bioclimatic Design: Psychometric Chart

20 DEW-POINT TEMPERATURE, °C HUMIDITY RATIO, g/kg 15 WINTER SUMMER 0 -5 -1022 16 18 20 24 26 28 30 32 OPERATIVE TEMPERATURE, °C

Fig. 5 ASHRAE Summer and Winter Comfort Zones (Acceptable ranges of operative temperature and humidity for people in typical summer and winter clothing during primarily sedentary activity.)

HVAC System Design Goals and Recommending Systems

Heating and cooling system for large buildings

GIVE SPECIAL CONSIDERATION TO THE SYSTEMS INDICATED IF YOU WANT TO:			Induction	VAV	Duct VAV	Air	Multizone CAV (page 177)		Chilled	Fan-Coil Terminals (page 180)			Hydronic Radiant Heating and Cooling (page 183)	Central Single- Packaged Units (<u>page</u> 192)	Packaged Heat Pump Units (page 193)	Split- Packaged	Packaged Terminal Units (page 184)	Solar	Ventilation Cooling	Mass	Evaporative Cooling (page 237)
Minimize first costs	•	•				•								•		•	•				
Minimize operating costs and energy consumption	•		0					•	•		•		•		•			•	•	•	•
Maximize control of air velocity and air quality			0	•	0	О	О	•													
Maintain comfort with large heating and cooling load changes		•	0	•	O					•											
Minimize system noise	•	•	О		О	•	О	•	•			•	•					•		•	
Minimize visual obtrusiveness	•	•	0	•	О	•	0	О	0				•	•				•	•	•	•
Maximize flexibility of space reconfiguration	•	•	0	•	О					•		•				•	•				
Condition a large, single-story, open space														•							
Minimize floor space used for the heating and cooling systems								•	•	О		•	•	•	•	•	•	•	•	•	•

[•] Frequently use

o Less frequently used

HVAC Systems and Architectural Space Implications: VAV, CAV, Multizone System & Chilled Beam

HVAC Systems and Architectural Space Implications: Fan Coil Unit, Heat-pump, & Radiant Heating

The Architect's Studio Companion. Iano & Allen. 2022

HVAC Systems and Architectural Space Implications: VRF + Fan Coil + Underfloor Air Distribution

HVAC Systems and Architectural Space Implications: VRF + DOAS

Dedicated Outdoor Air System (DOAS)

HVAC Systems and Architectural Space Implications: Displacement Ventilation + Perimeter Heating

■ FIGURE 7.7 Displacement ventilation diagram for an auditorium at the Science & Student Life Center at Sacred Heart School in Atherton, California. *Image courtesy of Stantec Consulting Services, Inc.*

Displacement Ventilation with Perimeter Heating

HVAC Systems and Architectural Space Implications: Precooling

■ FIGURE 7.13 The East San Jose Carnegie Library addition features a remote thermal mass for precooling ventilation air. Image courtesy of Stantec Consulting Services Inc.; image by Porus Antia.

HVAC Systems and Architectural Space Implications: Heat Recovery System

■ FIGURE 7.10 Heat Recovery of a Return Airstream. Image courtesy of Stantec Consulting Services Inc.; Drawing by Jim Burns

Example of Zero Design Approach

Systems Integration: Building Management System

Source: GAO. | GAO-15-6

Kyoung Hee Kim, PhD AIA NCARB
Professor of Architecture
Director of Integrated Design Research Lab
UNC Charlotte
kkim33@charlotte.edu

